skip to main content


Search for: All records

Creators/Authors contains: "Allen, Kathryn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the extratropical Southern Hemisphere and has wide ranging effects on ecosystems and societies. Despite the SAM’s importance, paleoclimate reconstructions disagree on its variability and trends over the Common Era, which may be linked to variability in SAM teleconnections and the influence of specific proxies. Here, we use data assimilation with a multi-model prior to reconstruct the SAM over the last 2000 years using temperature and drought-sensitive climate proxies. Our method does not assume a stationary relationship between the SAM and the proxy records and allows us to identify critical paleoclimate records and quantify reconstruction uncertainty through time. We find no evidence for a forced response in SAM variability prior to the 20th century. We do find the modern positive trend falls outside the 2 σ range of the prior 2000 years at multidecadal time scales, supporting the inference that the SAM’s positive trend over the last several decades is a response to anthropogenic climate change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract Background

    The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300.

    Results

    Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios.

    Conclusion

    The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.

     
    more » « less
  3. Abstract Objectives

    Written accounts, as well as a previous craniometric study, indicate that migrations of non‐Europeans and conversions of Europeans to Islam define Ottoman communities in Early Modern Europe. What is less clear are the roles of migration and admixture in generating intra‐communal variation. This study combines craniometric with strontium isotope data to compare the cranial affinities of locally born and immigrant individuals. We predict that locally born individuals are more likely than non‐locals to show evidence of admixture.

    Materials and Methods

    Radiogenic strontium isotope data for 21 Ottomans were compared against archaeological faunal values. Sixteen individuals with intact crania were also measured and compared against two comparative source populations from Anatolia and Europe. Discriminant function analysis assigned unclassified Ottoans to either comparative group based on typicality probabilities, with potential admixture established via intermediate morphology between the two source populations.

    Results

    Strontium isotope values revealed relatively high proportions of non‐locals, consistent with high mobility documented historically. The sexes differed, with more males classifying as “typically Anatolian” than females. Locals and non‐locals also had different cranial affinity patterns, with most classifying either as “typically Anatolian” or “typically European.” Contrary to expectation, none of the locals were identified as intermediate, suggesting admixture rates were relatively low.

    Conclusions

    Consistent with historical records, the results revealed high levels of extra‐regional migration, with most individuals identifiable as either typically Anatolian or European. Moreover, locals and non‐locals differed craniometrically, with no signs of admixture between Anatolian migrants and European converts in locals. This suggests intra‐communal divisions were maintained.

     
    more » « less